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Abstract
Nowadays, agriculture faces several challenges in ensuring food safety. Water scarcity is 
one of the main challenges facing farmers in the rainfed agriculture sector, especially dur-
ing the summer, leading to severe economic and farm losses. Internet of Things (IoT) has 
recently become a potentially revolutionary approach in smart farmingthat provides many 
innovative applications. In this research, we suggest an Edge-IoTCloud platform based on 
a deep learning methodology for monitoring and predicting farmers’ ability to satisfy crop 
water demands when there is insufficient rainfall. The smart farming system allows col-
lecting data about such important physical phenomena as soil moisture, air temperature, 
air humidity, water level, water flow, and luminous intensity. The latter is required for reli-
able and cost-efficient irrigation solutions that will be utilized to compute the necessary 
water quantity using Rawls and Turq formulas. Cloud services have been chosen for stor-
ing and processing significant amounts of data generated by sensors to produce a learning 
model that will be a basis for predicting future measurements using artificial intelligence 
and DL techniques. The preliminary results revelated that our proposal is a good starting 
point for developing low-cost smart farming for smallholder farmers to help them make 
better decisions.

Keywords Internet of things · Smart farming · Irrigation · Precision agriculture · LSTM · 
GRU 

1  Introduction and Motivation

Farmers worldwide  use 85% of the available freshwater resources, which will con-
tinue to be the dominant type of water consumption due to population growth and 
increased demand for food. In addition, with the skyrocketing advances in information, 
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communication, and electronic devices, there is an ever-increasing interest in setting 
strategies based on information and communication technology (ICT) [1].

Wireless sensor networks (WSN) have become a requisite for agriculture applica-
tions and have become a reality today, going hand in hand with the success of theoreti-
cal research contributions that the field has witnessed during the last decade [2, 3]. The 
Internet of Things (IoT) concept was invented by Kevin Ashton in 1999. IoT aims to 
connect anything at any time in any place, and it has recently become more relevant due 
to the growth of mobile and tiny devices, the development of computing in the cloud, 
as well as data analytics. Billions of objects communicating and sharing information 
are interconnected via public or private IP networks. These interconnected objects col-
lect data regularly and then analyze them to make decisions and initiate actions [4, 5].

According to the FAO, small-scale farming significantly contributes to food security and 
the rural economy. On the other hand,  smallholders are frequently confronted with vari-
ous  limitations that limit their production, profitability, and capacity to contribute to eco-
nomic progress. However, adopting solutions to improve irrigation efficiency has not reached 
small-holder farmers, owing to the high initial cost and high skills required to grasp the tech-
nology. Technological developments such as IoT, artificial intelligence (AI) and machine 
learning (ML), big data analysis, robotics, and  cloud/Edge/Fog computing have paved the 
way for the new era of an agricultural revolution. These techniques have provided solutions 
to several problems that have been raised in what is now called smart farming. Among these 
problems, we can mention the identification of plant diseases, the prediction of agricultural 
yields, drought as well, and the efficient management of irrigation, which has a direct impact 
on agricultural production, especially if this water resource is scarce and in the case of insuf-
ficient rainfall. Irrigation water management in terms of quality and quantity is a challenging 
task that involves the consideration of several factors that can be classified into three catego-
ries, as illustrated in Fig. 1:

Fig. 1  Paradigm of factors that affect any selected methods of irrigation in precision agriculture

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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• The application of remote sensing and geographic information systems is a nonintru-
sive and noncontact technique; different studies have shown that thermal imaging is a 
suitable solution for identifying key parameters to schedule irrigation. Among the criti-
cal irrigation,  features are water stress, evapotranspiration rate, stomatal conductance 
…etc. This technique could be used to assess the relationship between the water status 
of crop/field and radiation emission so it can be utilized as a measure for irrigation 
distribution and water stress [6–9]. However using the thermal imaging technique has 
many drawbacks that affect irrigation scheduling: different emissivities and reflections 
from surfaces obstruct precise  temperature measurements, and most thermal imaging 
cameras have ± 2% accuracy. Also, thermal images are difficult to interpret in specific 
objects eith erratic temperatures.

• Weather and environmental sensing are ranked as ground-level irrigation methods it 
directly affected by climate. Nodes of this level can cover a large geographic region. It 
is used to track important weather pattern changes, yet when combined with the inter-
net of underground things (IOUT), sensing can provide real-time weather information 
that can be collected at the farm level [10–12].

• The IOUT is composed of sensors and networking systems. This need emerges from 
partially or fully submerged underground for real-time monitoring and soil sensing 
[13]. There are several critical features for irrigation, such as soil moisture, soil texture, 
soil salinity…etc. IOUT is protected by weatherproof enclosures and, in underground 
settings, water-tight containers [12, 14]. Unfortunately, energy consumption is a vital 
issue in IOUT because of the low power constraint for sensors to prolong the network’s 
lifetime without a spare battery. Additionally, the soil’s  physical parameters greatly 
impact the channel quality in IOUG communications (e.g., soil moisture).

For more refined irrigation water management for agriculture, we found helpful to con-
sider the influence of meteorological and environmental parameters and the underground 
measurement parameters of the agricultural plot to be studied. This paper    proposes a 
decision support system (DSS) dedicated to smart agriculture that will allow small farm 
farmers to manage irrigation water  best. We use concepts such as Edge computing, fog 
computing, and  cloudlet [15] to bring computational and storage resources closer to the 
farmer and IoT to implement remote monitoring mechanisms through gateways between 
measurement devices and the cloud to perform computation and collaboration. Therefore, 
through the use of Long Short Term Memory Recurrence Networks (LSTM) and Gated 
Recurrent Units (GRU)-based models, we offer an Edge-IoT-Cloud intelligent irrigation 
framework with a DL approach to predict environmental factors from reaching further per-
suasive conclusions.

Specifically, we propose a sustainable, low-cost, autonomous, and easy-to-use irrigation 
control system to help smallholder farmers manage irrigation water for agriculture more 
efficiently. Using IoT-based sensing technology,    the resulting platform is based on a DL 
approach by collecting fundamental physical quantities such as soil moisture, air tempera-
ture, humidity, water level, water flow, and light intensity. Furthermore,  we consider an 
Edge-IoT-Cloud platform for storing , processing and exploitation a large amount of col-
lected data. The contributions of this paper can be summarized as follows:

• Development of a low-cost, high-support smart agriculture platform to improve irriga-
tion efficiency of small-scale farmers to save water in various crops that typically have 
a distinct water requirement profile at each stage of growth, and with high performance.

• Design of a smart IoT irrigation system based on the new Edge-IoT-Cloud platform.
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• Water quantity calculation needed for irrigation depending on farm’s soil texture and 
crop coefficient.

• Implementing edge-level infrastructure to predict the most important environmental 
factors (air temperature, air humidity, soil moisture) based on field sensory data and 
weather forecast data using Long-Term Memory Recurrent Network (LSTM) based 
models and Grid Recurrent Unit (GRU) based models.

The remainder of the paper is organized as follows: Sect. 2 presents a discussion on the 
application of IoT in smart agriculture. Section 3 introduces irrigation systems followed 
by Sect. 4, which briefly surveys the related works. Section 5 provides our proposed smart 
platform in precision agriculture, especially irrigation management systems. The experi-
mental study and results analysis are discussed in Sect. 6 while Sect. 7 concludes the paper 
and outlines directions for future works.

2  IoT in Smart Agriculture

Smart farming technologies and precision agriculture (PA), they are becoming increasingly 
appealing due to their ability to meet such rising demand and meet global food supply 
demands [16]. PA is a farming method that uses data sensors, connected things, remote 
control equipment, and other advanced technology to provide more control over the field 
and the team to farmers. Data collection, cloud-based data analysis and decision-making, 
and IoT-assisted agricultural operations are the three types of IoT technology.

2.1  Benefits of IoT in Agriculture

Owing to recent advancements in sensor technology for implementing IoT-based smart 
farming, the growth of WSN and IoT technologies to improve these IoT systems plays 
a vital role in the agriculture digital revolution [17]. The benefits of IoT in agriculture are 
summarized in the following illustration.

• Excelled efficiency: Farmers can monitor their products and conditions in real-time 
using IoT-enabled agriculture. They can get insights quickly, foresee difficulties before 
they occur, and make well-informed judgments on how to prevent them. Agriculture 
IoT solutions also offer automation, such as demand-based watering, fertilization, and 
robot harvesting.

• Agility: Farmers can immediately respond to any significant change in weather, humid-
ity, air quality, or the health of each crop or soil in the field thanks to real-time monitor-
ing and forecast systems.

• Improved product quality: Farmers may better grasp the intricate connections between 
the environment and the quality of their crops by using soil and crop sensors, aerial 
drone surveillance, and farm mapping. They can reproduce the optimum circumstances 
and improve the nutritional content of the items by using linked systems.

• Cleaner process: IoT-based precision farming systems make farming more environmen-
tally friendly but dramatically reduce pesticide and fertilizer consumption. This strategy 
yields a cleaner and more organic end product compared to standard farming practices.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Consequently, all of these factors might contribute to economic progress of any country 
and an enormous contribution to food security.

2.2  IoT Applications in Agriculture

According to the literature review, IoT applications in agriculture may be divided into six 
categories. As seen in Fig. 2, it is now possible to explore IoT applications in agriculture 
and gain a better understanding of the ability of IoT. In the following section, we highlight 
these six categories.

2.2.1  Irrigation Management System

Data collection through sensors aids in determining the precise irrigation period. About the 
fact that this is to be anticipated in many cases, IoT applications have been made easier in 
the timely water management. As a consequence, the misuse of water is decreasing day by 
day. Investigation in the field of irrigation systems were carried out to rationalize the use of 
water in diverse crops irrigation from basic ones to advanced ones. To achieve water sav-
ing, irrigation system frameworks have been proposed based on various techniques, e.g., 
thermal imaging, RGB (Red, Green, Blue) images [18], Crop Water Stress Index (CWSI), 
direct soil water measurements, etc. [19].

Fig. 2  IoT applications in precision agriculture
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2.2.2  Water Quality Monitoring

Another problem that might impact crop health and limit harvest is water quality. Tem-
perature, pH, conductivity, dissolved oxygen, and other variables all impact water qual-
ity. Water quality monitoring systems based on the Internet of Things are progressively 
emerging as a solution to this challenge. These devices may be used to remotely monitor 
and adjust the physical and chemical properties of the water.

2.2.3  Precision Farming Using UAV

Unmanned aerial vehicles (UAVs) and drones are also finding a position in agriculture 
in this modern era [17]. The agricultural drone is an interesting innovation in IoT-based 
agriculture field which is operated in practice according to two types [20]: Ground 
Drone and Aerial Drone, this can be programmed to detect details such as NDVI, water 
stress or lack of specific nutrients in crops. It benefits to the ease of use, time-saving, 
crop health imaging, integrated geographical information system (GIS) mapping and the 
ability to increase yields.

2.2.4  Precision Livestock Farming

In the livestock monitoring and management system [21, 22], IoT applications have a 
major impact. Here, the location trackers are implemented in the livestock so that they 
are tracked at grazing time. Therefore, the health conditions of all animals are recorded 
at the same time (supported by IoT technologies).

2.2.5  Green House Automation

Rapid climate change affects not only agriculture, but also the agricultural system in 
operation. In this situation, IoT applications play a key role in improving agriculture by 
installing sensors and actuators outside and inside the agricultural domain. Moreover, in 
the intelligent greenhouse system (IGS), IoT applications adjust the state of the climate 
according to the particular predefined instructions set. This can be done through sensors 
able to collect real-time data that help control the automatic irrigation system in IGS.

2.2.6  Crop Disease and Pest Management

From the birth of agriculture, crop diseases and pest have caused severe losses to farm-
ers, IoT provides a solid platform for the development of successful agricultural disease 
and pest management strategies. It depends on three aspects: sensing, evaluation, and 
treatment, which is a difficult task in traditional farming practices.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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3  Irrigation Systems

There are several ways to distribute water in farming operations that use water inputs, 
also known as watered farming. Different options have differing degrees of effective-
ness, and in certain situations, a particular approach can be used for a specific crop.

The particular irrigation practice has several forms, which can be classified into several 
methods, as depicted in Fig. 3, according to water distribution way (WDS) and existence 
sensing systems (ESS) [2, 23]. In case of WDS, we found mainly four categories: (i) flood 
irrigation, (ii) shower water system, (iii) dribble water system, and (iv) nebulizer water 
system. Whereas in case of ESS, three categories can be considered: (i) water system with-
out any thought, when the water sum isn’t calculated or assessed, (ii) scheduled irrigation 
when the water is provided agreeing to the assessed needs in a period of the year, as well as 
(iii) Ad hoc water system when the water sum is calculated based on the sensors measure-
ments or prediction using AI techniques. The majority of research on PA proposes using 
pumps and valves in order to convey the water in conjunction with sensors to degree natu-
ral parameters in arrange to calculate the water needs [2].

4  Related Works

In this section, we outline some irrigation system frameworks to save water based on dif-
ferent approaches, such as thermal imaging, Crop Water Stress Index (CWSI), direct soil 
water measurements, and so on, which  have been developed. In addition,  some of them 
have used AI techniques to enhance the prediction aspect. Researchers in [6] created an 
irrigation sensor mounted on a smartphone. The digital smartphone cameras were used to 
process RGB to grey for ratio determination between wet and dry soil areas to detect soil 
moisture. The wetness and dryness ratio are transmitted via a gateway to the water motor 
controller. In addition, a Mobile device (APP) is developed to regulate sensor activity (like 
ON/OFF) and to set a sensor in sleep mode. The bulk of the earlier proposed irrigation 
systems does not consider weather forecast information (e.g., precipitation) in the making 
of irrigation decisions. This engenders a waste of fresh water, energy, and crop quality (due 

Fig. 3  Water management in precision agriculture
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to excess in irrigation) like when rain immediately follows by the crop watering. To han-
dle such cases, WSN-based solutions can provide more efficient decision support for such 
processes by using weather forecasting information (e.g., precipitation) from the Network. 
In prior works, the amount of water used was monitored and irrigation was scheduled on 
the basis of canopy temperature distribution of the plant, and data was collected by means 
of thermal imaging [6, 9]. Watering systems can also be mechanized using the soil volu-
metric water content  information, using dielectric moisture sensors to regulate actuators 
and economize water, as an alternative to daily pre-determined and scheduled irrigation 
with a specific duration. For example, an irrigation controller opens a solenoid valve and 
irrigates bedding plants (impatiens, petunia, salvia, and vinca) when the substrate’s water 
volume decreases below a given set point [1, 24]. Allen et al. [25] suggested the evapotran-
spiration (ET)-based method, which is a critical parameter in determining crop irrigation 
needs that are influenced by climate variables such as solar radiation, relative humidity, 
temperature, and wind velocity, as well as crop specificities such as growth phase, assort-
ment and density, soil properties, hazards, and disease control. ET-based frameworks can 
reduce water consumption to 42% over time-based water irrigation scheduling [7, 10, 26]. 
Electromagnetic sensors for measuring soil moisture were the basic instruments for devel-
oping an irrigation system that can reach water savings of 53% compared with irrigation 
by sprinklers in a rural area of 1000  m2 [1, 6]. Agriculture constitutes the greater part of 
the water used, and is therefore the first sector affected by water shortage, leading to in 
a decreased capacity of maintaining food production in its satisfactory level. Therefore, 
the efficient water use in agriculture remains one of the most important agricultural chal-
lenges that modern technologies are helping to resolve [27]. The author’s goal in [28] was 
to gain a deeper understanding onsite-specific suitability of the Mid Elevation Spray Appli-
cation (MESA) and Low Elevation Spray Application (LESA) sprinkler systems in corn 
irrigation, as well as future water and energy savings. The automated irrigation system has 
proven feasible and cost-effective in optimizing water resources for agricultural production 
[1]. A few scientific studies work on using data processing techniques for a stronger deci-
sion support framework for agricultural data. The authors in [10] propose a smart irrigation 
architecture based on IoT and hybrid approach that relies on DL to predict soil moisture. 
The proposed algorithm uses sensor data collected from recent and past weather forecasts 
to predict soil moisture. However, Environmental sensing is not sufficient to make a good 
irrigation scheduling, also authors don’t take into consideration the crop coefficient and the 
soil texture. Due to the recent advances in the sensors industry for use in irrigation systems 
for agriculture, especially smart farming [26–29] and the progress in IoT technologies to 
be applied in improving these systems, IoT plays a major part in the digital revolution. 
Agana and Homaifar [30] discuss the issue of drought prediction using DL algorithms. The 
research focuses on the effectiveness of the suggested approach to traditional approaches 
such as support vector regression (SVM) and multi-layer perceptron (MLP) in forecasting 
various time scale drought conditions. The new solution showed an efficiency advantage 
over the classical approaches. Din et  al. [31] an analysis of several IoT-based ML mod-
els were presented. The specific architecture and achievements in several  areas  include 
agriculture, climate and energy resources, IoT technologies, and ML techniques. A smart 
agriculture-based tracking system to track temperature and soil moisture have been imple-
mented in [32]. The machine manages the sensed data and performs the necessary action 
based on  temperature and soil moisture values stripped of human interference. Unfortu-
nately, most of the earlier irrigation systems do not consider and combine the most impor-
tant factors that affect any selected irrigation method in precision agriculture, as shown in 
Fig. 1 while making irrigation decisions.
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This leads to a waste in fresh water, energy, and crop loss (due to the misuse of water), 
especially when by crop watering is immediately followed by rain or the vice versa. To 
handle such cases, we anticipate the IoT-based intelligent irrigation architecture proposal 
with a DL approach to predict (Soil-moisture, Air-temperature, Air-humidity) to reach 
more convincing conclusions. Table 1 compares various IoT systems for agricultural irriga-
tion in terms of precision. The main difference between the present work and those avail-
able in the literature is that most of the schemes suggested focused only on one factor to 
compute the required water quantity. Unfortunately,  few research works of literature dis-
cuss many factors  simultaneously [1, 2, 10, 23]. The present work differs from previous 
research because it gathers four factors and combines them to enhance irrigation efficiency, 
productivity, quality, profitability, and agricultural production sustainability. In particular, 
we consider the following factors: i) the soil texture, ii) the crop coefficient, iii) sensed data 
with the weather forecast, and iv) sensing of the underground parameter, in our case soil 
moisture. The aim is to compute the required quantity of water according to these factors.

5  Smart Irrigation Platform

The platform presented above is based on the ideas proposed by [1, 10, 14, 33–40], by 
making appropriate modifications to our application. In this article, we propose a low-cost 
smart farming for enhancing irrigation efficiency of small-scale farming, however it will 
get more efficient. It will accomplish the following: (1) allows the deployment of a num-
ber of complementing low-cost sensors, (2) implements the concept of “intelligent irriga-
tion in-the-box” with "plug-&-sense" approach, (3) utilizes edge computing technology 
to provide extremely creative methods that are simple to implement and appropriate for 
smallholders, (4) and uses technologies such as DSS and AI to predict the most important 
environmental factors (i) for a variety of crops, (ii) for a given farm’s soil texture and (iii) 
at a particular moment. As we can observe in Fig. 4, our platform’s devices in the first layer 
aim to collect data and transmit them for processing using the NRFL01 radio module and 
can be stored in a private database. The user (farmer) can analyze received data and moni-
tor the crops in real-time. The system architecture is designed in three layers as depicted by 
Fig. 5: data layer (Box A) and (Box B) represents a Gateway node, data processing layer 
(Box C) at the edge level, and application layer (see Fig. 5). This distributed architecture 
represents a major extension of our previous works [5, 23, 39] on PA, where we calculated 
the useful reserve of water (RU) according to the texture of the soil (Clay, Limon, Sand, 
Organic Matter). For the second method, we used the (Rawls and Turq formulas) equa-
tions, which accurately estimating the required measurement of water according to the soil 
texture of the farm and the crop coefficient by merging Rawls linear regression equations.

5.1  Edge Network Description

The data processing and intelligence layer are more than a simple pipe where your data 
is transiting. iIt can process everything, at the edge level (Box C). As a result, the Rasp-
berry Pi 3 B + (RPI3) boards-based edge network will be able to conduct complex and 
intensive AI data analyses locally, enabling the so-called Edge-AI architecture to deliver 
intelligence closer to end-users. Edge-AI allows for complete management of IoT data 
and AI processing, creating a completely autonomous and intelligent system with plug-
and-sense  and  predict characteristics for implementing sophisticated IoT applications 
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across a wide range of IoT verticals. ML models developed in the central cloud and 
deployed on the edge layer are typically used in prediction services. The three design 
steps of the proposed architecture are described in Fig. 6 and explained with sufficient 
detail in the following.

5.2  Step 1: Remote Sensing DATA 

The smart farming system architecture, as illustrated in Fig. 5, has been proposed to collect, 
transmit and process the physical collected parameters (Soil-Moisture, Air- Temperature, Air-
Humidity, Water-level, Water-flow, Luminous intensity, Combustible Gas (vapours) for the 
security of crops) of farming land along with the weather forecast information to manage the 
irrigation efficiently, the field data collection device is depicted in Fig. 9. It summarizes details 
of the sensors that are included in this box. The programming of the irrigation scheduling 
algorithm by the language (Merely C/C++). We configure the NRF24L01 module in write 
mode, and we specify the address of the destination, then we read the sensor values using 
the "analogRead ()" function on the pins data, then we apply a calculation to normalize the 
captured data. If there is a frequent change in the data, then we send 6 successive packets, 
separated by a small interval; these packets are necessary for detecting an anomaly in the Fog 
layer; otherwise after each one-hour duration, we send a packet. Before sending a packet with 
this module, you must switch to the sending mode, then choose a common communication 
channel and define the destination address.

5.3  Step 2: DATA Processing and Intelligence Layer

We begin this step by using the library Pandas [41] to load the datasets, then pick the tar-
get columns (Soil-Moisture, Air-Temperature, Air-Humidity) then we locate and delete the 
missing values since we can’t go through the learning process with the inclusion of the last 
ones. This step includes manipulation libraries, and pre-processing of data (Numpy, Pandas 
…etc.), and other learning (Keras, Tensorflow, Pytorch …etc.). Selecting a library that meets 
our needs presents a challenge, as each of them has its own advantages and disadvantages. The 
libraries we have used throughout our work are highlighted in Fig. 7. In this phase, the input 
data of the learning model is prepared, Table 2 illustrate the different steps of pre-treatment. 
Preparation and cleaning step is started by using the "Pandas" library, to load the datasets, 
then select the target columns (Temperature, humidity …), then we identify and we would 
eliminate the missing values, because we cannot pass to the training phase with the presence 
of its last, the results obtained are shown in Table 2. In this research work, we used free data-
sets from different sources, which contain values measured at an interval of one hour (the 
prediction of future measurements), and other in real time (detection of anomalies) which 
are not treated in this paper. We are interested in creating prediction models, to predict future 
measurements ("Hours" and "Days"). Scaling of inputs variables is a critical step in the use of 
neural networks, the difference in the scales between the input variables may increase the dif-
ficulty of the problem to be modelled), so it is advantageous to apply pre-processing transfor-
mations to the input data, the outputs are post processed forgive the required output values. In 
our case, we used the "MinMaxScaler" method, which is included in the "sklearn" library, this 
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estimator allows to reduce the scale between ("0" and "1"), depending on the function (1). In 
the last step, we will structure the data in the form of a sequence as shown in Fig. 8.

(1)Xsc =
X − Xmin

Xmax−Xmin

Fig. 4  Proposed IoT-based smart farming system architecture

Fig. 5  Global View of our pro-
posed operational architecture

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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The operational architecture illustrates information about soil moisture for the upcoming 
days; it also suggests irrigation plans based on the level of soil moisture and precipitation 
predicted by the system. To save water and energy, the generated information by algorithm 
and device is stored in InfluxDB database at the server as given in Fig. 11. The Edge system 
is placed between IoT sensors Network and the Cloud as an intermediate layer. It comprises 

(2)Xi = X
0
…Xn

(3)Yi = Xn+1

Fig. 6  Main steps of IoT-based smart farming decision support system
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three primary modules: data acquisition module, prediction module, and visualization mod-
ule. Data collected by networked sensors are sent using different transmission network pro-
tocols. Data is stored closely to the Edge to provide quick access to data for the farmer dur-
ing interventions. Moreover, farming data remains available even if the internet connection is 
temporarily interrupted. Processing and validating data at the edge level reduce the amount of 
data transmitted to the cloud and conserves the global energy of the architecture and network 
bandwidth. we have planned a (RPI3) boards as an Edge level because it includes sufficient 
hardware resources for processing, at the software level it is based on the Linux kernel, so 
it is compatible with most languages and AI libraries. Each sensor in our IoT system has 
a range of measurements that must be evaluated at Edge’s level to serve as a baseline for 
detecting abnormal behavior. For instance, if we consider a temperature ranging from − 40 
to + 80 °C for the DHT22 sensor, such imprecise data must also be corrected according to 
each sensor’s behavior and take into consideration historical data to prevent the system from 
triggering false alerts and adapt the frequency of data collection and sensing to obtain more 
reliable data. After the preparation and cleaning of the data, the learning phase is performed. 
This phase is costly in terms of resources, so we have chosen to use the "Google Colab"(GC) 
platform [42], which offers "CPU" and Free "GPU", as well as the "Google Drive” (GD) [43] 
storage service to save the model as a file (*. h5) after each epoch.

5.4  Step 3: Application DATA 

Data are collected and processed by a web service based on NodeJS before being sent peri-
odically to the cloud architecture. All data streams are stored in GD before they are trans-
mitted to GC to execute AI techniques used for training, testing, and prediction.

NodeJS listens on the serial port "/dev/ tty0", with a baud rate of 115,200; when new data 
is written to the port, we extract the measurements (they are in the form of a character string 
separated by commas), then we check if all the sensors work perfectly. These data are stored 
in the InfluxDB database temporarily; after that, we form a structured package with the last 
six measurements of each sensor because they must correspond to the entries of the detection 
models anomalies phase that will be presented in our future works. The MQTT client then 
sends a request to the MQTT broker, which is in the local server or in a Virtual Machine (VM) 
at the Cloud level. All the operations are displayed on the active page (written in HTML with 
JavaScript, which has listener’s events compatible with messages generated by the SocketIO 
module to display all changes in real time). To start irrigation planning, we need to calculate 
the useful reserve of water UR parameter in mm. There are multiple functions for quantifying 
UR from soil texture data. The linear regression equations have the advantage of being simple 

Fig. 7  Data preparation and cleaning steps
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and have been tested on a large sample of US soils (2,500 horizons taken from 32 states of 
the United States), their validation offered correlation coefficients of 0.80 and 0.87 for water 
content estimation at − 15,000 hPa and − 330 hPa respectively. To start irrigation planning, 
we need to calculate the useful reserve of water UR parameter in mm. There are multiple 
functions for quantifying UR from soil texture data. The linear regression equations have the 
advantage of being simple and have been tested on a large sample of US soils (2500 horizons 
taken from 32 states of the United States), their validation offered correlation coefficients of 
0.80 and 0.87 for water content estimation at − 15,000 hPa and − 330 hPa respectively.

6  Rawls Linear Regression Equations:

The Useful reserve (URi) of a farm i is a key metric in our contribution. Initially, we calculate 
the field capacity using formulas (4) and (5) with:

• W330 water content at −330 hPa (mm/m).
• W15000 water content at - 15.000 hPa (mm/m).
• Ar: Clay content (%).
• Sa: Sand content (%).
• MO: Organic matter content.
• h: the thickness of the horizon(mm).

  The useful reserve (UR) in mm is calculated for each horizon by the following function 
(6):

• Wilting point: W1500 without irreversible dieback of plants.
• Field capacity: W330 after saturation and drying for 48 h.

This reserve determination depends on the soil characteristics and the plant nature, more 
details on the irrigation scheduling algorithm steps are given below.

(4)W330 = 257.6 − (2 ∗ Sa) + (3.6 ∗ Ar) + (29.9 ∗ MO)

(5)W15, 000 = 26 + (5 ∗ Ar) + (15.8 ∗ MO)

(6)UR = (W330 − W15000) ∗ h

Fig. 8  Example of an input data structure as a sequence for a learning model
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6.1  Turq formula:

In our application, we have proposed three calculation methods, the first method calculates 
the RU according to the soil texture thanks to the soil structure knowledge (Clay, Limon, 
Sand, Organic Matter), the soil texture table that directly estimates the RU, and for the sec-
ond method, we used the Rawls linear regression equations. Besides, for the calculation of 
potential evapotranspiration ETP, we use the third method, it’s Turq formula: The formula 
(7) is valid for relative humidity (hr) ≥ 50% (on the month), the formula (8) for hr < 50%. 
Furthermore, an operational architecture at the edge level to predict environmental factors 
based on field sensory data and weather forecasting data using (LSTM)-based models and 
(GRU)-based models.

With: ETP: evapotranspiration in mm/month. J: number of days in the month. T: aver-
age temperature over the month (°C). hr: average relative humidity (%). Rg: average solar 
radiation (here measured) in cal/cm2/day. ETR: the actual evapotranspiration. RFU: it’s 
easy reserve useful RFU. Peff: effective rain. KC: is a cultural coefficient.

(7)ETP = 0.013j (Rg + 50)
(

T

T + 15

)

(8)ETP = 0.013 j (Rg + 50)
(

T

T + 15

)(

1 +
50 − hr

70

)

(9)B = ETR − (Peff + RFU)

(10)Peff = 0.6 ∗ Pmoy − 10 ifPmoy ≤ 70 mm

(11)Peff = 0.6 ∗ Pmoy − 25 if Pmoy > 70 mm

(12)ETR = ETP ∗ Kc

Fig. 9  Field data collection 
device. [Legends 1: DHT22 
Sensor, 2: Soil moisture Sensor, 
3: NRF24L01 module, 4: Water 
level Sensor, 5: Light sensor, 
6: LCD display nokia, 7: LCD 
display I2C, 8: Gateway node, 
9: LEDs notification, 10: Relay 
Switch, 11: Power supply 12 V, 
12: Water pump, 13: Water 
flow sensor, 14: Solar panel 
ZW85X115-12, 15: Solar panel 
6 V, 16: amplifier, 17: Power 
supply 9 V, 18: PC] The mega 
Arduino card and NRF module 
are in the Box
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7  Experimental Study and Analysis

This section presents the proposed platform implementation and the analysis of the results. 
We use low-cost, open-source hardware platforms such as Arduino boards and Raspberry 
because commercial IoT devices are maturing, but they are still prohibitively expensive for 
low-income nations. The main objective of this experimental study  is to create our own 
wireless network under the Arduino environment to transmit data from one or more sen-
sors at any time of the day. Along with weather forecast information for developing an 
algorithm for predicting the upcoming day’s environmental factors for enhancing irrigation 
efficiency of smallholder farmers to achieve water savings in various crops and great per-
formance. The system was tested in our laboratory (RIIR) in the Oran1 University, and we 
plan to test the platform ion a real farm of the vineyard in El-Malah city, close to Oran city 
(Algeria).

A Decision Support System (DSS) has been developed (see Fig. 8) to predict the soil 
moisture based on field sensors as highlighted in Fig. 9 data and weather forecasting data, 
using LSTM-based-models and GRU-based models. The algorithm displays data about the 
upcoming days with regard to the three parameters. It also suggests irrigation schemes, 
based on the level of soil moisture and on anticipated precipitation. In order to save water 
and energy, the generated information by algorithm and device is stored in InfluxDB Data-
base at the server. The smart DSS in detail is shown in Fig. 8. To get a better understand-
ing of how our platform works, we model it by representing conceptually all communica-
tions involved in its operation. To do this, we use the UML (Unified Modeling Language) 
modeling approach to model configuration tasks and the information exchange between 
different communicating objects that are involved in the test environment used in our pro-
ject context. Sequence diagrams allow us modeling these exchanges. This diagram (see 
Fig.  10) depicts the various data collection exchange, storage and display messages that 
can take place between communicating objects: platform, gateway, Edge, Fog, Cloud and 
the intermediary (the farmer). Our objective remains the development of an autonomous 
platform for environmental data measurements, such as air temperature, air humidity, solar 
radiation, soil humidity …etc., in real time. In this work, a sensor/actuator node has the 
collecting data role and sending them to the gateway, which is connected to a serial port on 
the PC. A desktop application developed with Java allows us reading received data via this 
serial port, and storing them in a InfluxDB database, then visualizing them through graphi-
cal curves and calculating the need for soil water with the different defined methods. After 
that, the application sends this need to the sensor/actuator node to perform the irrigation 
process. The main steps related to the operation of the platform are highlighted in Fig. 8.

7.1  Remote sensing DATA 

These results are preliminaries because the test was made inside the laboratory, so we 
plan to test the platform on a real vine farm r to demonstrate the proposed platform per-
formance. All data were uploaded each hour to the web server for remote supervision. For 
instance, real-time experimentation details are shown in Fig. 11. We suggest cloud services 
solution for storing the large amounts of data generated by sensors, then we used them in 
the prediction of future measurements; Azure Cloud was chosen to ensure the accessibility 
and availability of our platform (it can be accessed anywhere and anytime), thus guarantee-
ing scalability and increasing resources in the case of overload (elasticity). We received a 
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free student offer, which we will use it to create a virtual machine (VM) linked to a public 
IP address, and  then we access this machine with the Remote desktop protocol (RDP). 
InfluxDB offers a limited free cloud service, but it allows users to customize their dash-
board for monitoring and data analysis, as presented in Fig. 11.

In order to increase computing power and load balancing; it is necessary to think of 
adding slave nodes which take care of the resource-intensive processing, the commu-
nication on this cluster is carried out by a wireless network produced by the WIFI card 
integrated into the (RPI3) as illustrated in Fig. 12. Figure 13 represents the number of 
packets where the edge cannot process them according to several scenarios, according to 
the results the gateway can process 6 packets per second without loss, although the case 
of several nodes represents a better gain because most of the packets are lost because of 
the NRF24L01 module which fails to receive them. In Fig. 14, we evaluate the irriga-
tion planning algorithm for real-time monitoring and DSS, which shows the current soil 
moisture recorded by the sensor. Precipitation information will help users/farmers in 
planning/scheduling optimum irrigation by calculating the real useful reserve (UR) by 
different modes. If the moisture has increased to 20%, irrigation will start automatically. 
The vertical bars indicate automated irrigation periods triggered by temperature when 
soil-humidity was below the threshold value (20%), the water flow increased until the 
soil-humidity was above 20%, than the water flow decreased to 0 at 17:28.

7.2  Experiment for Tomato Irrigation

Growth-stage-specific  KC for potato and tomato used in this study are mentioned above the 
Table 3 according to the food and agriculture organization of the United Nations [48]. Fig-
ure 15 depicts water requirement calculation for tomato crop with rooting of 30 cm.

The estimation of the reserve of soil from the texture triangle is: RFU = 12.20, for 
a visual representation of the dependence, the texture class was: silty clay loam with a 
red dot as described in Fig. 16, we have used the soil texture calculator of united states 
agriculture department [49]. The estimated reserve of a soil from Rawls formulas is: 
RFU = 12.0. One can also predict the actual ETR evapotranspiration for the month 2019-
03-22 to 2019-04-22. T: refers to the average monthly temperature  = 20 (° C). Hr is the 
monthly  average relative humidity  = 46 (%). With the surface of 10 hectares and Kc 
ini = 0.8. Hence, the monthly water required equals 76.33, and the need for daily water 
amounts to 2.46. The growth-stage-specific  KC is also considered in the calculation of 
the UR, it has been noticed that for a growth-stage-specific  KC fin = 0.8, the actual evap-
otranspiration ETR equals 9.83. Similarly, ETR is computed for the  KC ini = 0.2 and  KC 
mid = 0.9. The results obtained are ETR = 2.45 and ETR = 11.06 successively.

7.3  Experiment for Potato Irrigation

Notably, in Fig. 17 shows the estimated reserve of soil from the texture triangle. It can have 
observed that the value of RFU = 36.0, as shown in Fig. 16, the texture class was: slit loam 
with a blue dot. The estimated reserve of soil from Rawls formulas is: RFU = 39.04. We 
can also estimate the actual ETR evapotranspiration for the month 2019-03-22 until 2019-
04-22 so that the data is collected from InfluxDB database. T refers to average temperature 
over the month = 20 (°C). Hr is the average relative humidity  = 46 (%). With a surface of 
10 hectares and Kc ini = 0.4. Hence, the monthly water required equals − 241.21, and the 
daily need for water is − 7.78. The growth-stage-specific  KC has also been considered to 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 A. Dahane et al.

1 3

calculate the UR. As a result, for a growth-stage-specific  KC fin = 0.75, the actual evapo-
transpiration ETR equals 9.22. Correspondingly, ETR is calculated for the  KC ini = 0.4 and 
 KC mid = 1.15 and the results attained are ETR = 4.91 and ETR = 14.14 successively.

7.4  Prediction DATA Using LSTM‑Based Models and GRU‑Based Models

This section presents the implementation of the new Edge-IoT-Cloud based architecture 
dedicated to smart farming and the obtained results analysis.

The objective of these experiments is to demonstrate how to create our wireless net-
work under an Arduino environment to transmit data from one or more sensors at any time 
of the day, simultaneously with information about meteorological conditions to develop 
an algorithm to predict environmental factors during the few days to come. The system 
was first tested in our laboratory, and we plan to test it on a vine farm near El-Malah city, 
located in western Algeria. Figure 6 presents an IoT-based smart farming DSS for to exe-
cute the models. A functional architecture within the Edge’s level has been developed (see 
Fig. 5) to predict the environmental factors based on field sensors and weather forecast-
ing data using LSTM-based models and GRU-based models. In this research work, two 
diverse information sources are considered, each featuring complementary and character-
istic features suitable to design and test LSTM and GRU approaches: In [44], historical 
hourly weather data (2012–2017) have been collected from 30 American and Canadian 
cities, as well as six Palestinian ones. The dataset covers ~ 5 years of high temporal resolu-
tion (hourly measurements) data of numerous weather attributes, such as temperature and 

Fig. 10  Sequence diagram of the irrigation system
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humidity that make the overall interest of our study. Detailed hydro-meteorological data 
from the mountain rain-to-snow transition area are available from 2004 to 2014 (Historical 
Hourly Weather Data 2012–2017) [45]: we are exclusively interested in soil moisture cal-
culations in the progress of this study. This data version resolves errors in all data files and 
replaces the earlier datasets. In our study, we treated the learning time on a dataset of 1191 
lines, for an epoch, and with a size of batch (batch-size) of 512, with several architectures 
(32,64,128,256), thus with the two calculation units’ "CPU" and "GPU", the results are 
represented in Fig. 18. From the results of the graph, we generally observe that the learn-
ing time increases, when the number of units in the layer increases (more units mean more 
operations), as well as GRU and faster than LSTM (the unit is only made up of two doors, 
instead of three doors), also GPU usage is efficient (LSTM is 30 times faster with GPU), 
the implementation of both algorithms with "Pytorch" library is better than "Tensorflow 

Fig. 11  Monitoring and analysis of data on the cloud service

Fig. 12  List of nodes that make up the cluster at the edge level
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/ Keras" with the CPU, and vice versa with the use of GPUs. The models built must be 
implemented, so optimizing the time necessary to carry out a prediction is also necessary. 
For this, we switch to a lighter version of our model using "Tensorflow Lite" the conver-
sion reduces their file sizes and introduces optimizations that do not affect accuracy. As 
shown in Fig. 19, the comparative results between LSTM and GRU on the prediction time 
(512 lines as inputs) using the different libraries (with the CPU). We notice that "GRU" is 
faster than "LSTM", and the models with "Tensorlow Lite" are the fastest, then "Pytorch", 
and at the bottom of the classification "Tensorflow / Keras”. In conclusion, we will use 
the GPU with the "Tensorflow" library in the learning phase, and for the deployment, we 
convert to "Tensorflow / Lite" if the accuracy of the two models (LSTM and GRU) is close, 
then we choose the one from GRU because it is the fastest. In this study, the LSTM cell 
architecture as defined by Zaremba et  al. [11] used in TensorFlow 2.0 has been utilized 
for the experiments. Several factors might enable speeding-up the training time, compris-
ing the dataset size, the platform development (e.g., Tensorflow, Pytorch, Keras, Caffe, 
MXNet), the hardware platform (e.g., CPU, GPU, TPU) and the AI/ML hyper-parameters 
mode (e.g., the hidden layer’s number, the neurons number in each layer, the learning rate, 
in addition to the batch size and the periods number). GC is a suitable area provided by 
Google for the training of models.

We used a laptop (Laptop PC) with a processor in all experiments: Intel Core i5-6300U 
@ 2.40 GHz, Memory: 8GO RAM, Disk: 256 GO SSD. In addition, a comparison between 
the LSTM-based and GRU-based models’ performances over the two test sets, is described 
in Figs. 20, 21 and 22, through a comparison of the results of both training and validation 
datasets, respectively. Results analysis has shown some key insights: (1) the training time 
can be reduced by if the model size is reduced and the batch size is increased; (2) CPU out-
performs GPU in terms of speed in the of small-sized models training time. It could be jus-
tified that with small models, the CPU-GPU data transfer overhead surpasses the computa-
tion acceleration benefit; (3) LSTM-based models require la ong training time compared to 
GRU-based models.

Even LSTM and GRU involve 1 input layer and 2 hidden layers, with 128 neurons for 
the first and 64 for the second.  The loss plot shows that the model has comparable perfor-
mance on both training and validation datasets. If these parallel plots start to depart con-
sistently, it might be a sign to  stop training at an earlier epoch, as given in Figs. 20, 21 
and 22. We also discovered the importance of collecting and reviewing metrics during our 
DL models training. Indeed, we observe that the training time for each epoch with LSTM-
based models is around 200 s. However, it could be calculated around 300 s with GRU-
based models. We proposed Adam,a method for efficient stochastic optimization to train 
our models that only requiresfirst-order gradients with little memory requirement. To avoid 
the overfitting issue,we used a callback technique in order to use the model that performed 
better on thevalidation set.

According to the recent research results, it even surpasses LSTM-based models in 
many applications. The experiments were conducted to predict the Air-Temperature, 
Air-Humidity and Soil-Moisture to predict these parameters of the upcoming days. 
Figures  20 (a) and (b) illustrate that the model has comparable performance for Air-
temperature, and gives the best results on both training and validation, especially with 
LSTM-based models. Even the Mean Squared Error (MSE) is higher than in GRU-based 
models. Table  4 compares the results of the two models, LSTM and GRU. The error 
is almost the same, while LSTM is more precise and converges faster, while the error 
increases as the number of steps increases; when in advance of one step forward, we rely 
more on predicted values, so we lose precision. Figures  21 (a) and (b) depict that the 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



An IoT Low‑Cost Smart Farming for Enhancing Irrigation Efficiency…

1 3

model with GRU-based models outperforms LSTM-based models slightly. Table 5 con-
firms that the GRU model is more accurate, whereas the error increases as the number of 
steps increases also show that the models obtained are accurate, even with several steps 
forward. Figures 22a and b show that the parallel plots start departing consistently after 
10 epochs. At the start of the 60th epoch, stopping training at an earlier epoch might be 
a sign. According to the results of Table 6, we notice that the error is large from the first 
step for both models; in the case of underfitting, the model has not learned enough from 
the data, so it has a weak generalization.

ReLU is the inner activation to avoid local minima issues. The experiments are repeated 
5 times, and the median Mean Absolute Error (MAE), the (MSE) and Root Mean Squared 
Error (RMSE) on both test sets are presented in Table 7. Despite all this, the model was 
well trained on testing and validation datasets recognizing that the graph size was too tiny. 
The findings show that the GRU-based models will improve performance for Soil-Moisture 
and Air-Temperature predictions. However, the  LSTM-based model outperforms GRU-
based models for Air-Humidity forecasts. Experiments were performed to determine the 
most reliable neural network topology, in terms of accuracy. MSE, RMSE, and MAE val-
ues for each technique are reported in Tables 8,9 respectively. The results are very superior 
in our prediction model with the ones found in previous studies by [10] and [50] where 
the values drop slightly; however, a significant decrease in RMSE, MAE and MSE val-
ues is observed in both the training and validation of both LSTM and GRU based-model’s 
predictions, they minimize the error between the actual data and the predictions. In com-
parison to a hybrid method (SVR + Kmeans), we found that SVR predicts soil moisture 
with higher MSE. Furthermore, ANN forecasts are unstable since they are based on aver-
ages from multiple network initializations, which can result in a different result each time a 
model is learned. The SVM results, on the other hand, are consistent and special. Regard-
less, it was shown that the LSTM and GRU-based models outperformed other methods in 
all situations.

8  Conclusions and Future Scope

In this work, we suggested an IoT-based intelligent irrigation system founded on a  new 
Edge-IoT-Cloud platform with DL approaches and open sources technologies to predict the 
environmental factors in our smart farming system (Air-temperature, Air-Humidity, Soil-
moisture) in order to reach more conclusions that have proven to be convincing. Then, this 
irrigation system was implemented and presented. As a result, it has been deemed feasible 
and cost-effective  to optimize water resources for agricultural production. Moreover,  this 
irrigation system allows cultivation in places with water scarcity, thereby improving sus-
tainability. Besides the monetary savings in water use, the importance of this natural 
resource preservation justifies the use of this kind of irrigation system.

In the meantime, we have illustrated the efficiency of AI strategies used in this article, 
especially regarding training speed and accuracy control. However, our practical realization 
is still relevant today and does not stop there. This platform does, in reality, have multiple 
viewpoints open to it: Introduce recognition models for fruits and vegetables and protection 
protocols. Indeed, we plan to use a computer vision system based on IoT using DL models 
to improve the quality of crops. Design and deployment of a precision agriculture-based 
(LPWAN) Low Power Wide Area Networks technologies such as Lora and Sigfox, which 
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Fig. 13  The rate of packets loss under several scenarios

Fig. 14  Analysis of irrigation launching
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are energy-saving techniques similar to Long Range Wide Area Networks (LoRaWAN), for 
improving irrigation performance of large-holder farmers.

Table 3  Growth-stage-specific  KC for tomato

Crop Clay % Silt % Sand % Organic matter % Rooting depth cm Crop coefficients  (KC)

Kc ini Kc mid Kc fin

Tomato 28,0 55,0 17,0 1,75 30–60 0.2 0.8–0.9 0.8–0.7
Potato 17,80 47,0 25,90 2,65  < 30 0.4–0.5 1.1–1.15 0.75–0.8

Fig. 15  Calculation of water needs for tomato cultivation with rooting depth of 10 cm
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Fig. 16  The soil texture triangle generated by soil texture calculator of USDA

Fig. 17  Calculation of water needs for potato cultivation with rooting depth of 30 cm
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Fig. 18  Comparative results between LSTM and GRU on training speed (TK Tensoflow/Keras, C CPU, 
G GPU, P Pytorch)

Fig. 19  Comparative results between LSTM and GRU on the prediction time (TF Tensorflow)
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Fig. 20  a Plot of Model Loss on Training and Validation of Air-Temperature using LSTM-based models. b 
Plot of Model Loss on Training and Validation of Air-Temperature using GRU-based models
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Fig. 21  a Plot of Model Loss on Training and Validation of Soil-Moisture using LSTM-based models. b 
Plot of Model Loss on Training and Validation of Soil-Moisture using GRU-based models
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Fig. 22  a Plot of Model Loss on Training and Validation of Air-Humidity using LSTM-based models. b 
Plot of Model Loss on Training and Validation of Air-Humidity using GRU-based models
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Table 4  Results of the prediction 
model of the air-temperature 
(Day)

Models LSTM GRU 

Step forward/error MSE RMS MAE MSE RMS MAE

1 1.012 1.006 0.656 1.19 1.09 0.778
2 1.874 1.368 0.867 3.42 1.849 1.327
3 5.12 2.26 1.48 6.75 2.598 1.889
4 7.78 2.79 7.86 10.87 3.298 2.442
5 10.35 3.21 2.18 15.34 3.91 2.95
6 12.54 3.54 2.451 19.82 4.45 3.36

Table 5  Results of the prediction model of the soil-moisture (Day)

Models LSTM GRU 

Step forward/error MSE RMS MAE MSE RMS MAE

1 9.899 ×  10–5 0.00994 0.00890 3.9833 ×  10–5 0.00631 0.00304
2 0.00064 0.0253 0.0247 0.00011 0.01054 0.00634
3 0.001475 0.0384 0.03723 0.000199 0.01413 0.01017
4 0.0025 0.0502 0.0477 0.000295 0.01718 0.013828
5 0.00426 0.0652 0.0625 0.00041 0.02029 0.017698
6 0.00698 0.0835 0.08127 0.00054 0.02336 0.02128

Table 6  Results of the prediction model of the Air-Humidity

Models LSTM GRU 

Step forward/error MSE RMS MAE MSE RMS MAE

1 153.09 12.372 9.5758 148.556 12.188 9.2503
2 271.742 16.484 13.300 278.59 16.691 12.781
3 323.030 17.973 14.16302 341.022 18.466 14.474
4 372.869 19.309 14.7577 388.268 19.704 15.432
5 408.22 20.204 15.092 424.656 20.607 15.562
6 423.875 20.588 15.3606 445.951 21.117 16.165

Table 7  RMSE, MSE, MAE of the LSTM and GRU based models for environmental factors Training and 
Validation

Parameters LSTM GRU 

RMSE MSE MAE RMSE MSE MAE

Air-tempera-
ture

1.4090 1.9855 1.0777 1.3331 1.7771 1.0167

Soil-moisture 0.0268 0.00072 0.0114 0.0220 0.00048 0.0101
Air-humidity 11.7550 138.18 8.1946 12.9778 168.4255 8.4585
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