3 IN THE MEDITERRANEAN AREA

INTEL-IRRIS - PRIMA S2 2020 - PROJECT ID 1560

-—1._'_:&1

Intelligent Irrigation System for Low-cost
Autonomous Water Control in Small-scale
Agriculture

Deliverable D3.6C

Final report on evaluation and KPI assessment in pilots

Responsible Editor: IRD

Contributors: UPPA

Document Reference: INTEL-IRRIS D3.6¢c
Distribution: Public

Version: 1.1

Date: May 2024

INTEL-IRRIS D3.6c

DOCUMENT SECTION AUTHOR(S)

SECTION 1 C. Pham (UPPA)

SECTION 2 G. Gaillard (UPPA) & J.F.
Printanier (IRD)

Version Date Changes

V1.1 May 2", 2024 PuUBLIC RELEASE

V1.0 Apr 15%, 2024 FIRST DRAFT VERSION FOR INTERNAL APPROVAL
V0.1 Apr 4", 2024 FIRST DRAFT

Page 2 of 25

INTEL-IRRIS D3.6¢

Document D3.6¢c “Final report on evaluation and KPI assessment in pilots” extends D3.6b
“Second report on evaluation and KPI assessment in pilots” with details on the energy
consumption of the soil devices based on the IRD PCBA v4.1 which is the hardware platform

used by default in the starter-kit v3.

Page 3 of 25

INTEL-IRRIS D3.6¢

T 0o Yo 11T o o 5
2. Reviewing power provisioning with primary batteries........cccccccccviiiiiiieeveseeeee, 6
2.1, Introduction and CONEXL..........ooiiiiiiiii 6
2.1.1. Deployment in Settat 2024 faced battery issues..........ccccccevvviiiiiiiiie i, 6
2.1.2. Power consumption study was with PCBv2 capacitive.........c.cccccccvvvvieiiini. 6
2.1.3. Searching for a SOftWare ISSUE............oocuuiiiiiiii i 7
2.1.3.1. A recent change in powering the DS18B20............cccooiiiiiiiiiiiiis 7
2.1.3.2. A possible mismatch of pin mode setup for sensors......................eoeel. 7
2.1.4. A debug protocol to identify and tackle the power draining problem................... 7
2.2, TSt SEEINGS. ..ttt e e 8
2.3. Description of 4 experiments, with 4 hardware & software settings............................. 9
2.3.1. Middle term scheme: 2WT with primary batteries and a FTDI32 with the VCC
o1 e T1=T oo o 0= Tex =T A 9
2.3.2. Simple fast test scheme: capacitive + FTDI32...........coooiiiiiiiiiiiiiiieeeee e 9
2.3.3. Secured current draw measurement scheme: with a “peak-eater” protecting
(o= 0= (o] (o] (PP 9
2.3.4. Second middle term scheme, without a laptop monitoring.............cccvvvvvveneeeeee. 10
2.4. Monitoring: tuning the Arduino COAE..........ccoiiiiiiiiiiiicic e 10
2.4.1. Monitoring the activity duration for each Sensor..............cccueveeiiiiiiiiiiiiiiiiiieeeee. 10
2.4.2. CPU-reported VORAGES.ueiiiiiiiiiiiiiiic et 11
2.4.3. Connect the FTDI32 to the RPi’s USB port to monitor the serial output........... 12
2.4.4. Connect the WaziGate to a smartphone-shared Wi-Fi...........cccoooiiiiiiiiiiiinnnnn. 13
2.5. Preliminary validation tests with a multimeter............cccii 13
2.5.1. Voltage values measurement test............cooiiiiiiiiiiiiiiiii e 15
2.5.2. Current values measurement testS.........cooiiiiiiiiiiii 15
2.5.2.1. PCB Without Arduino............ccooiiiiiiiiiee e 15
2.5.2.2. PCB With ArdUINO........uiiiiiiiie e 16
2.5.2.3. PCB with Arduino and secured scheme with a capacitor..........cc..c.......... 17
2.6. Results using data @analysSis..........coouiiiiiiiiiiii e 17
2.6.1. Voltage decreases NOrmMally..........c.uuuiiiiiiiiiiiiiiieieee e 17
2.6.1.1. Experiment With FTDI32.......ccooiiiiiiee e 17
2.6.1.2. Experiment with radio monitoring only..........cccccccevvveeiiiciin e, 18
2.6.2. Sensors times of aCtiVity.........coovi 20
2.6.2.1. Temperature sensor’s update time.........cccccvvvii 20
2.6.2.2. Watermarks update time...............o oo 21
2.6.2.3. Capacitive update time..........coouiiiiiiiiie e 21
2.6.3. Estimating the lifetime of @ deViCe...........cccvviiiiiiiiiiiiiiiieeeeere e 22
2.7. CoNCIUSIONS, ISSUES, lIMItS. .. .eeen e e 24

Page 4 of 25

INTEL-IRRIS D3.6¢

1.INTRODUCTION

This final deliverable on “evaluation and KPI assessment in pilots” will investigate in detail the
energy consumption of the soil devices based on the IRD PCBA v4.1 which is the hardware
platform used by default in the starter-kit v3. Readers can refer to D1.2¢c “Low-cost sensor
generic platforms for connected irrigation system — v3” to have more detail on the IRD PCBA

v4 1.

<% The latest INTEL-IRRIS sensor bod?&l"”‘-"'

@® The PCB is already fully assembled, including the resistors for
the temperature and watermark sensors (on the back side)

Radio module is
already mounted, as
well as connectors

FERERINE

Solar charging is
available and the
solar circuit is on
the back side

Page 5 of 25

https://intel-irris.eu/wp-content/uploads/2023/07/D1.2c.pdf
https://intel-irris.eu/wp-content/uploads/2023/07/D1.2c.pdf

INTEL-IRRIS D3.6¢

2.REVIEWING POWER PROVISIONING WITH PRIMARY
BATTERIES

2.1. Introduction and context

We realized this study in March and April 2024, because of two reasons: first, our Moroccan
partners in Settat had detected an issue regarding powering the devices with alkaline primary
batteries; and secondly, we intended to explain, generalize and share the internal study
made by IRD in early 2023: “Exp_10 INTEL-IRRIS Starter-kit Soil sensor et SEN0308 :
alimentation par piles”. In particular, we aim at providing an estimate of lifetime for the
devices running with typical heavy duty primary batteries.

21.1. Deployment in Settat 2024 faced battery issues

Some devices brought and set up in February 2024, with the final PCBA and powered with
alkaline batteries (Duracell), were deployed on the field. 2 main issues were raised:
(1) Feedback from Assia (INRA CRRA Settat)

In a field experiment with 4 devices and a gateway, 2 of the 4 devices are not "seen by" the
gateway (their data is not collected) until their reset button is pressed. After 24h-48h 2
devices stop being seen (no data on the gateway). Last battery voltage received 2.9V.

(2) Feedback from Abdellah (INRA CRRA Settat)
Issues detected for a total of 4 devices out of 8: the batteries dysfunction (are drained out)

after a few hours or days.

2.1.2. Power consumption study was with PCBv2 capacitive

An internal study by IRD was conducted in laboratory conditions with a capacitive device with
PCBv2. Among other contents, the study brings the following table:

Inwerser
Désact,

................

........

1= tension, 2= courant 50 mA /div

Table 1: Consommation

Etat Duree s Courant mA Puissance mW Energie pWh
Arduino boot 2.7 5 15 11
Start 1.3 5 15 6
Capteur 0.68 8 24 5
Radio Lora 1.32 115 350 128
Veille 3600 0.0047 0.014 14
24 h 3.8 mWh
1 an 1.4 Wh (500 mAh)

We intend to provide and detail the steps to obtain a more complete version of this table.

Page 6 of 25

INTEL-IRRIS D3.6¢

2.1.3. Searching for a software issue

We tried to explain the issue faced at Settat looking for possible causes In the code:

2.1.3.1. A recent change in powering the DS18B20
The main difference since a batch of previous tests on the new PCBA was due to a commit
we made while preparing devices in February (Settat):

https://qgithub.com/CongducPham/PRIMA-Intel-IrriS/commit/d81bb10c2c6ce2a4c294a7d81a3
08cacae3f3749

The commit adjust and reuse (adds) the “power soft start” procedure in the update function of
the temperature sensor (DS18B20), for the devices with PCBA (fully assembled), but without
solar panel. Indeed, we noticed the temperature values were not collected otherwise.

2.1.3.2. A possible mismatch of pin mode setup for sensors

The so-called “solar circuit”, added by IRD to the PCBA, on its back face, to deal with power
supply with a solar panel, and different non primary batteries (rechargeable NiMh, lithium...)
uses a Mosfet transistor connected to the analog pin A1 of the Arduino.

The mosfet gets switched down when A1 is set to input mode (normally, intended during the
Arduino boot, and when flashing). And here is the possible mismatch:

- In the main INO Arduino file, in the setup(), the piece of code for the temperature
sensor (DS18B20.cpp) is called to set A1 in output mode;

- In the main INO Arduino file, in the loop(), the piece of code for the watermark sensor
(watermark.cpp) is called to set A1 in input mode between each update (every hour);

Although surprising, these differences do not seem to impact the measured voltage values
(see below). We tried to imitate the watermark code and set A1 in input mode between each
update of the DS18B20. Measurements did not change. Thus we stopped looking further in
this direction.

21.4. A debug protocol to identify and tackle the power draining
problem

We reproduced the problem using low-cost AA batteries: in 31 hours we experienced a
battery drain on a 2WT device. We tried some hardware tests and measurements, with a
multimeter in an unstructured manner, that were not conclusive but enabled us to discuss
and synthetize a detailed electrical debug protocol for these cases of power drain:

1. We should first check whether the DS188B20 (temperature) is not powered up
during sleep: after the emission (the transmission LED is ON during about 1.3s, so, after
that), compare voltage between Bat+ et CN2+ (temperature sensor VCC);

2. Then we should measure the instantaneous current draw with a yA meter, by
adding a big capacitor (10 000 uF) between the multimeter (caliber 200 pA) and the Arduino,
and by doing the measurement ONLY AFTER the radio transmission (current draw 110 mA,
way beyond the caliber);

Page 7 of 25

https://github.com/CongducPham/PRIMA-Intel-IrriS/commit/d81bb10c2c6ce2a4c294a7d81a308cacae3f3749
https://github.com/CongducPham/PRIMA-Intel-IrriS/commit/d81bb10c2c6ce2a4c294a7d81a308cacae3f3749

INTEL-IRRIS D3.6¢

3. Then we should measure the batteries' voltage during the radio transmission,
because a low current availability can lead to a decrease in voltage that could make the
Arduino continuously reboot and rapidly drain the batteries.

4. Finally, we should take off the batteries, and connect a laptop via USB (FTDI32),
and collect the debug log (the serial output) during several days to analyze it.

This protocol proposal was then completed by two steps:

5. Measure the current draw of the device, having removed the Arduino from the
PCB. In that case, only the radio chipset is powered and active, this should cause a current
draw of about 1.5-2.0 mA. NB: with the Arduino, the radio is off during sleep, current draw
gets down to around 5 pA.

6. An improvement to step 4: collect the serial logs using batteries and an FTDI32
without connecting its Vcc pin. This way, the actual behavior of the device when supplied
power with primary batteries, supposedly causing trouble, is highlighted. NB: maintaining the
connection with the FTDI32 draws current, thus reinforcing the problem of battery drain if
any.

2.2. Test settings

- A Device with PCBv2 433 MHz with capacitive sensor;
- A Device with PCBAv4.1 868 MHz with 2 watermark sensors, 1 DS18B20 sensor;

- Two Wazigate gateways (2022, 2023): black casing, updated software, one 433 and one
868 MHz.

- Two Ubuntu laptops, a connexion sharing smartphone, an ethernet cable;

- Two FTDI32 (version from chinese manufacturer HWA YEH), one with a 6-pin Female
connector, the other with 5 jumper wires, (VCC pin left unconnected).

- 4 Alkaline Duracell Optimum batteries (heavy duty);

- 4 AA low-cost primary batteries;

- 1 multimeter, possibly with hook clips;

- an electronic breadboard and jumper wires;

- a 10000 pF capacitor, a 10 kQ resistor, a press button switch;

- A lab power supply, but the primary batteries otherwise.

Page 8 of 25

INTEL-IRRIS D3.6¢

2.3. Description of 4 experiments, with 4 hardware &
software settings

After the first short test using low-cost AA batteries on the 2WT, we conducted longer tests.

2.3.1. Middle term scheme: 2WT with primary batteries and a
FTDI32 with the VCC pin disconnected
Duration: March 25th - April 8th;

- Device 2WT 868 MHz PCBA with two heavy duty Alkaline, and connected to the FTDI32
without VCC;

- Monitorization of the serial output via USB and FTDI32 on a laptop;

- Hourly temperatures collected on Wazigate.

2.3.2. Simple fast test scheme: capacitive + FTDI32

Duration: various tests, max 3h.
- Device capacitive 433 MHz PCBv2 powered by FTDI32, without batteries
- Monitorization of the serial output via USB and FTDI32 on a laptop;

- Arduino code in debug mode #define TEST_LOW_BAT: one sensor cycle every minute
approximately.

2.3.3. Secured current draw measurement scheme: with a
“peak-eater” protecting capacitor

VOLTMETER 10 mV = 1 pA

START

[SEERRE Wi Ammmmma”

Average_current 'ﬁ)k 1% Pulse_current

| g | &
| S

~— POWER_SUPPLY

C Microcontroller
10000 pF

Page 9 of 25

INTEL-IRRIS D3.6¢

This setup has been built in Settat with the following modifications/specificities:

- Use for the power supply of the Duracell alkaline batteries that were used on the field
deployment when the issue was detected;
- Use of a set of capacitors in parallel summing a total capacitance of 10000 uF.

2.3.4. Second middle term scheme, without a laptop monitoring

In the first middle term scheme, we faced the issue of constantly checking the state of the
laptop (battery, sleep mode, serial connection). Eventually, it rebooted twice without a
particular reason, overnight, thus we lost 2 periods of data. Besides, the presence of the
FTDI32 draws current from the Device’s batteries, and impacts the experiment.

- Device 2WT 868 MHz without FTDI32, on new primary heavy duty Alkaline batteries;
- Monitorization of voltage values on the Wazigate (radio output);

- Arduino code in debug mode #define TEST_LOW_BAT: one sensor cycle every 10
minutes approximately. This period was chosen to increase the power demand of the
device, and accelerate the data extraction to estimate the lifetime. Still, we chose 10 instead
of 1 minute in order to be sure to maintain a sleep period that causes a similar impact on
batteries and components.

2.4. Monitoring: tuning the Arduino code

24.1. Monitoring the activity duration for each sensor

In order to measure this, we first thought that timestamping the serial monitor would be
enough. We use TIO v2.8 (https://github.com/tio/tio) as serial tool to timestamp the serial
logs, e.g. using:

~$ tio -b 38400 -I --log-file /home/quigui/tempuino.log --timestamp --timestamp-format
iso8601 /dev/ttyUSB1

The first idea was to tag the update() function of the sensors with two serial prints (“begins”,
and “ends”). This was implemented on March 29th, as follows, on the 2WT device.

Extraction:

152 [2024-03-31T20:16:15.973] CRC,43FA

153 [2024-03-31T20:16:15.973] LoRa pkt size 37
154 [2024-03-31T20:16:15.973] LoRa pkt seq 97
155 [2024-03-31T20:16:15.988] LoRa Sent in 1968
156 24_03_ 016 g22 yitch 40 poue gying mode
157 2024-03-31T21:20:34.355] Wake from power saving mode
158 §2024-03-31T21:20:34.355] BATTERY-->3.41 | 3.34

159 2024-03-31T21:20:34.369] update DS18B20 begins

160 2024-03-31T21:20:35.389] update DS18B20 ends

161 2024-03-31T21:20:35.389] update watermark begins

162 2024-03-31T21:20:35.404] 32760

163 2024-03-31T21:20:35.404] update watermark ends

164 2024-03-31T21:20:35.404] update watermark begins

165 2024-03-31T21:20:35.420] 32760

166 2024-03-31T21:20:35.420] update watermark ends

167 2024-03-31T21:20:35.420] batvoltage

168 [§2024-03-31T21:20:35.420] 3.34

169 N2024-03-31T21:20:35.420] batvoltage was

176 Sending \!WM1/3276.00/CB1/255.00/WM2/3276.00/CB2/255.00/5T/18.87
171 LS I EVACEL VS — —

172 [2024-03-31T21:20:35.452] use LPP format for transmission to gateway

173 [2024-03-31T21:20:35.468] end-device uses native LoRaWAN packet format

174

175 [2024-03-31T21:20:35.484] plain payload hex

2024-03-31T21:20:35.436

Page 10 of 25

https://github.com/tio/tio

INTEL-IRRIS D3.6¢

We then used a python script to measure the update() time by computing the time difference
between the “begins” and “ends” timestamps.

We suspected the serial interface would cause some time variations, impairing the delay
accuracy. Second idea was then to compute the time difference directly on the Arduino,
using the millis() function. Implemented on April 3rd as follows:

-l

double o ()
{

co Co Co Co
co

w

long startupdate = ();
Serial.println("update watermark begins");
();
Serial ("update watermark ends:");
Serial.println(()-startupdate);
94 return (());
95 }

QR

o

o W0
J = @

=

[L=]
w

NB: here we are looking for an upper bound of the update() time. Thus, the inclusion of the
two serial.printin() calls in the calculation of difference is not impairing.

24.2. CPU-reported Voltages

In order to measure the voltage without adding components and complexity to the PCB, in
Intel-IrriS the Arduino code has taken advantage and inspiration from the Arduino VCC
library (https://qgithub.com/Yveaux/arduino_vcc).

During the radio transmission, the current demand is so high that the voltage supply
decreases. Before mid-April, the code only provided a measurement of voltage value during
transmission when using a solar panel. Indeed in that case, this value determines whether
the device has enough power supply to work, or needs to wait for a solar charge.

We modified the code to use the Arduino_VCC during transmission for the cases without a
solar panel.

https://qgithub.com/CongducPham/PRIMA-Intel-IrriS/pull/19

This PR merges two previous ones:

e \oltage during tx, code refactoring, nextTransmissionTime #17

In the case of a device that does not use the solar portion of the circuit to manage batteries,
e.g. a PCBA with Alkaline batteries, this PR enables to get voltage measurements from the
CPU during transmission. These later are printed on serial, and can be sent to the gateway
by radio, separately in debug mode (TEST_LOW_BAT), or as the minimum value (default).

Finally, after testing all, we have modified the computation of nextTransmissionTime to better
comply with the expected behavior: instead of adding extra time between measurements
when low voltage is detected, the nextTransmissionTime is now multiplied by a chosen factor
in that case. The transition between short and long intervals, meant to warn the end user
beforehand, is now implemented in a simpler way.

e impose a sleep period after 3 consecutive reboots #18

Page 11 of 25

https://github.com/Yveaux/arduino_vcc
https://github.com/CongducPham/PRIMA-Intel-IrriS/pull/19
https://github.com/CongducPham/PRIMA-Intel-IrriS/pull/17
https://github.com/CongducPham/PRIMA-Intel-IrriS/pull/18

INTEL-IRRIS D3.6¢

This PR implements a counter of reboots during TX. It is stored on EEPROM and reset to
zero when any TX goes well. Otherwise, the measure_and_send() function is prevented
once.

We implemented this merged pull request, i.e. the new version of the code including the
changes, using scheme 4: Second middle term scheme. No need for a laptop anymore, we
will be able to extract the data directly from the GW.

NB: Each Arduino board would report a different voltage value in the very same situation. A
calibration is normally necessary to match this with voltmeter values, by adjusting
VccCorrection in the code.

2.4.3. Connect the FTDI32 to the RPi’s USB port to monitor the
serial output

The WaziGate’s RPi has 4 USB connectors. Instead of using a laptop, we tried as a third idea
to collect the serial output of the devices directly connecting the FTDI32 to this USB port.

In order to do that, you need a terminal multiplexer on the RPi, such as Tmux or Screen: this
way, you can trigger a serial monitor that would pursue its logging when you close the SSH
session on the WaziGate.

But there is a conflict between the FTDI32 (chinese version) and the RPi: the serial
connection breaks after some variable time. DMESG journal shows a non-trivial error
message, “ftdi_sio_ttyUSBO [...] urb stopped: -32”. So we did not go further there.

F.| Terminal-pie.. FRE@ G = A & 04abe 1256

Fle Edt View Terminal Tabs Help

: bremf cfg80211 set power mgmt: power save enabled
: bremf_cfg80211 set power _mgmt: power save enabled
: ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready
: Link is Up - 10Mbps/Full - flow control off
: Link is Down
: Link is Up - 100Mbps/Full - flow control off
: bremf _cfg80211 set power mgmt: power save enabled
: bremf cfg80211 set power mgmt: power save enabled
: ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready

: new full-speed USB device number 7 using dwc otg
: New USB device found, idVendor=0403, idProduct=6001, bcdDevice= 6.00
: New USB device strings: Mfr=1, Product=2, SerialNumber=3
: Product: FT232R USB UART
: Manufacturer: FTDI
: SerialNumber: A50285BI

: FTDI USB Serial Device converter detected
: Detected FT232R
: FTDI USB Serial Device converter now attached to ttyUSBO

: Link is Down

: Link is Up - 16Mbps/Full - flow control off
: Link is Down

: Link is Up - 106Mbps/Full - flow control off
: Link is Down
: bremf cfg80211 set power mgmt: power save enabled
: bremf _cfg80211 set power mgmt: power save enabled
: ADDRCONF(NETDEV_CHANGE): wlan@: link becomes ready

Page 12 of 25

INTEL-IRRIS D3.6¢

244, Connect the WaziGate to a smartphone-shared Wi-Fi

The middle term experiments took place without the presence of a continuous WiFi
connection provided by an Access Point. Instead, the Wi-Fi gets available from time to time,
in proximity to the personal smartphone used in sharing connection mode.

This revealed a quite correct behavior:

- The reconnection delay is no longer than a few minutes;

- The Wazigate switches easily to AP mode when the connection is not shared
anymore;

- The DNS wazigate.local is successfully adapted to reach the Wazigate in AP or Client
mode;

- One slight detail though, that we already detected on Settat: accessing the dashboard
from the smartphone requires the Wazigate to be in AP mode and the phone’s mobile
data connection to be off. Otherwise, the web browser on the phone (in this case
Android, Realme C31), prioritizes and waits for a response from the Data network
instead of the local Wi-Fi network provided by the AP.

2.5. Preliminary validation tests with a multimeter

Before entering into longer experiments, the idea here is to validate that the device in our
hands has no specific hardware issue, related to the PCB, the connections, the Arduino...

Page 13 of 25

INTEL-IRRIS D3.6¢

And here is the schematic: (see PDF in github)

I T F) I

3 T

) T

5

Todo on Promini: Remove LDO and led resistor

Humidity SEN0193/0308

a3 Vee!
IRLMLS203

ont VeeM Ve
1)

P25V 1.04P
H L a0

2

H{-

H

VeeM

I
— = []rr]
GND ri3 | 3anF Ll1ook
i

A%
RC for soft start to avoid reboot ==
Temperature 18820 GND
cna [Jrss [Jre
XY38-2.549 a7k Ling
R
1 b6
2 Bredboard
3 CNg
P2254V-11.04P
n2

8338
v;rc Vo
10 . Nz

iy o

8 2 GND_ H c5

7 4 —wer H S
6[8< Lo 3
H b 4
A7 -~

3 AL € GND
2 A0 7
4 : ——x 8
4 2 MISO 0
H B i IV — 1
3 c D10 2
2 izpy D10 3
cNnt kY 2 5 4

ke 257 sk 525040
S N13
GND gngzlsnim | CRE
AZSATHAVIP T KAAZSATHW-2P
B = o 4
2=%3 GND <
ZBE3 %

M

1
a2

GND a
H 3
R0 :
18Kk L)
- =
g
XY308-2 544 m GND
Watermark2 | I} e 1)
2) Vet
b| Watermark1 | 2 o8 C02 SCD30 £
E—asiscL
<_JA4SDA

*Do not use solar without battery
Solar 6V 100 mA (15 V maxi)
No

REM
WIRELESS-LORA-RFMESWHSHD
e
MISO| : g D3 Vee
MOSI . i 2 T
SCK «
DIO I
D4 P B [
] oo GRD

ut
TPRTS0B0-33GJ5

Do IN it

5 LDo out

—i—

GRD

)
2
g

v vout

GND K

Gen” ne
cs
7o

7
Tl

i

o)
2
g

VeeM H1
T pzzsavnoze
i

1o

AIf no Q3 (no CMS)

D1
SS145-5MA

o
XY3082542P
SOLAR.

GND
R1
65 (NC fo lthium)
-

E}m s
"1 BSs138_c400505
ke > 30
ok

GND

A
Alkaline NiMH
(No LDO)

cne
XY308.2.54-2P

3SNiMh 1.2V
600 mAh

1S Lithium-ion 3.7 V.

with BMS and no R17
0 mAh

GND
TITLE: R
Intel-Irris Sol Sensor REV: 4.1
Company: IRD Sheet: 1/1

y: JFP

o9} EasyED,:“
3 T

Date: 2023-09-27 _ Drawn B
5

2.5.1.

Regarding the first step of our debug protocol:

Voltage values measurement test

check whether the DS188B20 (temperature) is not powered up during sleep: after the
emission (the transmission LED is ON during about 1.3s, so, after that), compare voltage
between Bat+ et CN2+ (temperature sensor VCC);

1. Using new (low-cost AA) batteries or USB powering (via FTDI32), during sleep, the
voltage between CN2-2 (temperature +) and Bat+ is static between 2.5V 2.7V.

2. Other voltage values regarding the temperature sensor:

a. Without the Moroccan commit: V{t+t-}; 3.2, V{Vcc,t+}: 0, V{Vcct-}: 3.2,

V{Vcc,tT}: 0;

b. With the Moroccan commit: V{t+,t}: variable around 0, V{Vcc,t+}: static
around 2.7, V{Vcc,t-}: 3.2, V{Vcc,tT}: static around 2.7

3. Other voltage values regarding the radio transmission: the voltage drops to 2.86 V
during transmission with low-cost AA batteries

Analysis: 1. and 2.b. seem to indicate Vcc-Veem(T+) = 0.5V of remaining voltage in the

sensors, which would be normal, and causing a neglectable current draw.

3. seems to show a limit of using low-cost batteries: in the code, the minimum voltage value
the software accepts is 2.85 V. This safeguards the 2.74 V value which is a minimum for the
Atmega CPU (and the Arduino) to boot.

Page 14 of 25

https://github.com/Guillaumegaillard/PRIMA-Intel-IrriS/blob/main/PCBs/IRD_PCB_4_1/Schematic_IISS_4_1_2023-09-27.pdf

INTEL-IRRIS D3.6¢

2.5.2. Current values measurement tests
2.5.2.1. PCB without Arduino

In a naive approach, surely but unwillingly ignoring the fundamentals of common and safe
use of a multimeter, we first measured here the short-circuit current draw of the low-cost
batteries. Using a 10 A caliber during a few moments, we first measured 1.3 A between
BAT+ and BAT-. A huge energy consumption that got us excited, “is it the bug?” :).

Although naive, this value seems significantly coherent: 1.3 A at 3 V corresponds in a first
approximation to 0.3 V with a demand of 130 mA => during the radio transmission, which has
such a demand, the voltage would drop about 0.3 V, reaching the minimum value of 2.7 V.

2.5.2.2. PCB with Arduino

The following week, we continued trying to diagnose the battery outage issue faced with the
PCBs.

Assuming the current draw is constant and very little during sleep time, it is possible to use a
short caliber of the amperemeter to obtain a precise measure. The difficulty of this
measurement is that you need to get in the sleep state before doing it. The internal resistor of
the amperemeter in such caliber and/or the switching from one caliber to the other makes the
voltage drop and the Arduino reboot.

Solution: short-circuit the amperemeter during boot and sensor cycle, then remove the
short-circuit after transmission, in order to do the measurement.

Page 15 of 25

INTEL-IRRIS D3.6¢

Caveat: during the sleep period, the ATMega microcontroller wakes up every 8 seconds with
a current draw 1000 times more important. One should not maintain the measurement active
more than a few seconds in order to avoid the risk of over-powering the multimeter. Same for
the risk of a sudden reboot. NB: It is possible that the capacitor(s) in the “solar circuit’
prevent this risk by charging this periodic current.

We measured this way the current draw of the device in sleep mode: 6.3 UA, that is to say,
perfectly normal, as expected.

This tends to make us discard the hypothesis of a current leak during sleep state. A relief for
the PCBs designers, but then we still need to find the explanation elsewhere.

2.5.2.3. PCB with Arduino and secured scheme with a capacitor

This was tested in Settat, so that we should be able to overcome the caveat of the simple
experiment (measurement without capacitor with the CPU waking up every 8s).

Note that you must check the leakage current of the capacitors before connecting the device.
That way, you can take them into account in the measurements.

Up to now, no stable result has been achieved that way.
2.6. Results using data analysis

By data analysis, we refer here to the extraction of information from serial output logs, and/or
from data gathered by a Wazigate.

2.6.1. Voltage decreases normally
2.6.1.1. Experiment with FTDI32

Here, the logs were collected during the first middle term experiment (see here up) during 14
days.

By filtering out rows including “BATTERY-->":

Page 16 of 25

INTEL-IRRIS D3.6¢

[2024-03-26T00:00:09.157] BATTERY-->3.43 | 3.36
We read and plot a graphical representation of the two voltage values:
BATTERY-— <current > | <last>

Current: Voltage read by the CPU at the beginning of activity (low current demand). NB: it is
not a current value, it is a voltage value in V. It is called “current” as opposed to “last”, i.e.
previous, anterior, etc. because it is sent over the radio during the very same activity cycle.

Last: Voltage read by the CPU at the end of activity (after transmission) (higher current
demand). NB: “last” is measured after transmission, so the value that is sent over radio
corresponds to the measurement done during the previous cycle of activity (“last”). For the
first transmission after flashing, “last” is set to the value taken by “current”. Since we
reprogrammed (reflashed) a couple of times the Arduino during the experiment, we had to
remove the first values from the graphical representation, for the sake of clarity.

3.44 + — J|ast
current

3.42 -

3.40 -
>
v 3.38-
[@)]
3
S 5 16 WWN_W |

3.34 -

3.32 -

5 1 o) Ay)) q
y .0’5’1’ . ,0’5’1 y .0’5'1’ . ,0’5;? ,0'*’0 y .0'*’% . ,0'*’0 , ,QD"Q
10 19 10 PN 10 10 10
time

The voltage decrease is of around 60 mV in 14 days ((3.37 - 3.31) x 1000). Assuming a
minimum functional voltage of 2.74 V for “last”, the batteries would work for 147 days:

((8.37 -2.74) x 1000) / (60/14) = 147

NB: we have seen that this estimate was wrong: a few days after April 8th, the batteries got
drained. And at the opposite side, we have examples of experiments working during 14
months, i.e. 420 days. This can be explained for several reasons:

Page 17 of 25

INTEL-IRRIS D3.6¢

- During transmission, the current demand is higher than during the measurement of
“last”. The minimum value is reached earlier;

- In the code, the minimum voltage value is set at 2.85 V, so the normal behavior of the
device breaks earlier;

- The FTDI32 is powered by the laptop, but the connection to it draws current from the
Arduino, so the voltage supplied decreases faster.

2.6.1.2. Experiment with radio monitoring only

We confirmed (at least as a possible reason) in the first middle-term experiment that the
connection to the FTDI32 significantly increases the power consumption.

We now run the other experiment using the radio, a gateway, and a sleep time of 10 minutes.
The voltage during transmission is now monitored too.

3.6

— last
during
— current
3.5 A
3.4
B 3y T
F-_-m"'m_,_.- T —“ pi L TR
TR
3.31 L
)
Q
532*
=
3.1 A
3.0
2.9 A
2.8 . .
5O 5O % % b 50 b o
8% 8% oF 0% 0% 8% 8% 8%
Time
Analysis:

- The voltage decrease is slower without the FTDI32;

- The sleep cycle being reduced to 10 mins, the energy consumption is increased (the
power-hungry activity period occurs 6 times more frequently, but it's not exactly 6
times more energy consuming since the device also draws current during sleep and
the sleep period is decreased...);

- The voltage values during transmission decrease very slowly, letting us expect a long
life to the batteries;

Page 18 of 25

INTEL-IRRIS D3.6¢

- Surprisingly, the voltage values during transmission even get steady higher values
after reprogramming the device, as if the batteries were benefiting from the holiday
break (time of upload, during which the FTDI32 takes care of powering the device).
For instance, we reached 2.93 V on April 13th, but we are still back and steady at
2.99 V only, after reprogramming on April 15th evening, and up to now on 22nd.

- There is still no clear explanation for why the voltage values during tx change (steady
state to an increased value) after reflashing the Arduino. It may depend on the battery
technology and/or sample, but much more tests on a wider variety of batteries will be
needed.

2.6.2. Sensors times of activity

In order to bound the energy consumption during measurement, and assuming the sensors’
consumption is the most power-hungry during measurement, these “up” times would help.

2.6.2.1. Temperature sensor’s update time

We found about one second (1.032 s) for the DS18B20. NB: this value depends both on
hardware and on software choices.

1035 -
1030 -
1025 1
>
£ 1020 -
Q
©
1015 -
1010 -
1005 - —— DS18B20 update
—— DS18B20 update precise
O & o {
&,0'53 &’0,5:9 N 30> N 2 OF N e . 5O g 5 2 D‘,OD‘D &,0')"0
I LA\ LI L L L\ LA\ L\
time

The “Serial readline” (we assume TIO, the serial monitor used here, reads the serial data and
bufferize it row per row, before timestamping each buffer) takes a varying time, so the
program under-estimates the measured delay in blue (based on these timestamps).

The second approach directly using Arduino’s millis() is more precise (red).

NB: the laptop inopportunely rebooted on March 30th.

Page 19 of 25

INTEL-IRRIS D3.6¢

2.6.2.2. Watermarks update time

— WML update

301 — wm2 update
—— WM1 update precise
25 WM2 update precise

0 &

oSS SN \L RV I E I P\ I R

O N) ST L S Y Y S S R

N L I I L ML ML
time

Same idea about the time precision of the serial output. Here, two watermarks are evaluated.

The major difference with the temperature is that the update time is very short (the mean is
around 8 ms).

2.6.2.3. Capacitive update time
225 - l
- LALANAA N (LA
220 -
215 - e e
[}
o
205 -
200 -
1951 — capa update
—— capa update precise
190 L T T T T T
- _30 .DQ ‘.’59 _90
o ¥ ok v ob W ob v ob v
time

For the capacitive sensor update time (same principle), we used the fast simple experiment.

Page 20 of 25

INTEL-IRRIS D3.6¢

The monitoring code focuses on the “raw analog” update, since the capacitive inherits from
this generic piece of code... during 2 hours approx.

The delay found here is around 221 ms. This is not what was considered in the study from
IRD. Indeed, the “Capteur” row in the table was meant to represent the full activity of the
Device between wake up and transmission (excluded).

NB: as we said, some delays during update are chosen in the code. The time value will also
differ depending on the version of the code (successive improvements of the measurement
accuracy and efficiency).

2.6.3. Estimating the lifetime of a device

Let’s take the same idea as previously: let's consider three states for the Device:

- Sleep;
- Sensor (and other) activity;
- Radio transmission.

Using the time stamped serial logs as previously, and being aware of their intrinsic
imprecision, let's estimate the measured duration of each state:

1500 — -
—— transmission duration

19901 1495 -
<l 1IN | (IO T
3 L_ ’ A __ 8 1490 -
6 1980 4 ‘ ‘ ‘ | l ’ s
B 2 1485 -
3 1975 3 L L) - -
S 5 1480+
21970 4 a
5 € 1475 4
< 1965 2
£ £

1960 1470 4

—t ission durati
1955 4 ransmission auration 1465 4
) 1) Aoy » o 0\ ' ' '

& e o S oS oS oS o N 20 220 50

»LD«’ 'LD" »LD«' »LD«' 1&' 1&' rLD«' rLD«’ N N N N N A B A A
N N 2 NS B B P o o o q
time time

The transmission time seems longer for the PCBA 2WT device, 1982 ms (reported 1968 ms
by the Arduino code), than for the PCBv2 capacitive device, 1482 ms (reported 1482 ms by
the Arduino code). This difference could be explained by the size of the LoRa messages (21
bytes for the capa, 37 for the 2WT).

—— awake times 1880 1

3260 1

3250 4 1870 A

w
N
B
o

1860 1. _

w
N
w
o

duration (2WT)
duration (capa)

1850 A
32201

32101 1840 A

3200 —— awake times

18301

o> &> N S ' '
S S O o o o o o0 o AN e A\
101& 1“1& 101& 101& 101& 101& 101& ok » o » o W o> \’7' N v
time time

Page 21 of 25

INTEL-IRRIS D3.6¢

The total awake times are around 3235 ms for the 2WT, 1859 ms for the Capacitive device.
NB: the increase in duration after March 29th for the 2WT is due to the addition of 4 serial
prints. Corrected values would be 3217 ms (2WT) and 1843 (Capacitive, 2 prints).

Finally, sleep times are not exactly what they are coded to be, this is due to the management
of the clock drift of the Arduino during sleep state.

le6

3.866

—— sleep times

3.864 1

3.862 4

w w
© ©
a -3
© =}

duration (2WT)

3.856 1

3.854 4

66240 A

66230

66220

al

o
)
N
[t
o

66200

duration (capa)

66190

66180

66170

)
aT

¥ K
'L‘Q’& 1‘9& i Pt

time

1) SN » %) i1
o7 Nb'bn' N&’i o® No“’g N&WQ m,o“’o
!
10

o Pl

—— sleep times

Mean sleep time for these two devices are about 3861s for 1 hour expected (2WT), and
66.2s for 1 minute expected (Capacitive). These values tend to increase in time.

Reporting all these values and adding some assumptions:

- Assume a max consumption of 0.01 mA during sleep;

- Assume a max consumption of 8.0 mA during sensor activity;

- Assume a max consumption of 130.0 mA during radio activity;

- Assume the voltage is always 3 V;

- Assume the capacity values of the batteries are provided for exactly the use case of
Intel-IrriS devices operation (a mix of (very) high and (very) low power demand in a
mix of heterogeneous delays);

- Assume transitions between awake and sleep states are done “time & energy’-less.

=> We obtain:
duration current power energy
S mA mwWw uWh

Sensing activities - 2WT 1.25 8.00 24.00 8.33
Sensing activities -- Capa 0.38 8.00 24.00 2.51
Radio Lora Tx - 2WT 1.97 130.00 390.00 213.42
Radio Lora Tx - Capa 1.48 130.00 390.00 160.33
Low power (sleep) 3861 0.01 0.03 32.18
Short low power (sleep 10min) 643 0.01 0.03 5.36

Capacitive (2 Wm + Temp. 2 Wm + Temp.

Device (C) |Device (2WT) (1h) [Device (2WT) (107)
1 cycle 195.02 253.92 227.10 HWh
24h 4.36 5.68 30.36 mWh
1 year 1.59 2.07 11.09 Wh
energy for 1 year at 3V 531.08 691.22 3,696.78 mAh
days with 2*100mAh AA batteries 137.55 105.68 19.76 days
days with 2*200mAh AA batteries 275.10 211.37 39.52 days

Page 22 of 25

INTEL-IRRIS D3.6¢

Analysis: this is a bit more pessimistic than in the IRD study, however, it is taken with
worst-case values. NB: these estimations are subject to a lot of factors not considered here,
e.g. but not limited to:

2.7.

External temperature;
Variability among batteries;
Variability among Arduinos;
Etc.

Conclusions, issues, limits

Concluding remarks:

With heavy duty batteries, the PCBA we tested does not drain its batteries faster than
expected, and all the measurements done are explained;

The study allowed for great improvements of reboot cascade management, and of
debug TEST_LOW_BAT mode with radio transmissions of voltage values during
transmission;

The estimates are pessimistic but not really trustworthy due to the assumptions one
must take, and to the factors impossible to include;

Nevertheless, the estimation highlights the fact that the radio transmission is longer
for a 2WT in debug mode than for a simple C type device: the power consumption
difference is significant;

A debug protocol has been provided and partially verified;

As being a yet another debug/preparation test, a possible verification of
batteries+Arduino could be to program the Arduino in TEST_LOW_BAT mode and
collect 10-12 minutes of data; this way, the voltage values before, after, and during
transmission can be verified (the voltage during transmission should be somehow
upper than 2.9 V and steady during the first minutes) before a field deployment.

Page 23 of 25

INTEL-IRRIS D3.6¢

Pr. Congduc Pham
University of Pau
Avenue de I'Université
64000 PAU

FRANCE

Email: Congduc.Pham@univ-pau.fr

Page 24 of 25

INTEL-IRRIS D3.6¢

This document has been produced in the context of the PRIMA INTEL-IRRIS project. The
INTEL-IRRIS project consortium would like to acknowledge that the research leading to
these results has received funding from the European Union through the PRIMA program.

Page 25 of 25

